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The various numerical methods obtained in a preceding work in the finite-difference scheme 
are compared among themselves and against the exact solutions of some simple, exactly 
soluble potentials. The tests strongly favour the limiting method, the discretized plane-wave 
method. A discussion of the results in the continuous spectrum is also presented. 

1. INTRODUCTION 

In a previous work [ 11, hereafter referred to as I, we have studied in a unified 
framework all numerical methods for the integration of the Schriidinger equation 
(and, in general, for the integration of the homogeneous Sturm-Liouville problem) in 
the finite-difference scheme at constant step. We may briefly summarize our results 
by saying that all numerical methods of common use are generated through the 
various Padi approximants to the Taylor expansion of the operator D* = d*/dr* in 
terms of the central second-difference operator 6’ with step h, defined as 8’f(r) = 
f(r - h) - 21(r) +f(r + h). The numerical methods are classified by two numbers, 
[N/M], corresponding to the degree in a2 of the polynomials of the numerator and 
denominator of the Padi approximant, respectively. The order of the error, i.e., the 
first power of h neglected, is given by 2(N + M + 1). 

These various [N/M] methods have received special names in the literature: the 
family [N/O] corresponds to the so-called Taylor-(2N + 2) methods, the family [l/N] 
corresponds to the Numerov-(2N + 4) methods and the family [N/N] with N > 2 
corresponds to the extended Numerov-(4N + 2) methods. 
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Another result of I, and the most important in our opinion, was the fact that the 
referred Taylor expansion is convergent and can be easily summed up, giving rise to 
our discretized plane-wave (PW) method. All these methods have a point in common, 
namely, that the required values of the potential are V(nh), i.e., the values at a mesh 
of constant step h, with n varying from 1 to some maximum value N,,. 

Certainly, all numerical formalisms call for numerical tests, and this is the main 
goal of the present work. We should say, however, before presenting the various tests, 
that there are no magic procedures for the numerical solution of any problem. In 
other words, none of the methods described in I should be straightforwardly applied 
to determine the bound states and phase shifts of a given potential, and some 
questions, such as the appropriate value of the number of points Np, the optimal 
value of the step (i.e., the largest value compatible with the desired error), and the 
correct sampling (i.e., the appropriate change of variables) are questions which 
cannot be answered a priori and which may require a large amount of numerical 
trials and/or a detailed study of the properties of the potential under study. 

The paper is organized as follows: Section 2 is devoted to the analysis of the 
results of the numerical integration, with a particular (and, it is hoped, novel) 
emphasis on the solutions in the continuum. In Section 3 we present the study of four 
analytically soluble potentials which behave differently enough so as to include most 
of the situations of practical interest (long tails, a core at short distances, weakly 
bound states, etc.,). Finally, the conclusions, results, and prospectives of this work are 
presented in Section 4. 

All numerical work has been carried out with a “personal computer” based on the 
6502 microprocessor chip. This is already a “result” of our work which we would 
like to stress here: the microcomputers are very slow systems (some 100 to 10,000 
times slower than the usual scientific computers) and this means that the PW method 
may be very efficiently coded and run in a large system in very short times. The 
computer program is very simple: it is only necessary to construct the various 
matrices and proceed to their diagonalization. For the diagonalization, we have used 
the algorithm Nb. 384 of the CACM(2), which has proven to be both quick and 
stable. The precision of our calculations is of 40 bits per word, approximately 9 
digits. 

2. THE DISCRETE AND THE CONTINUOUS SPECTRUM 
IN GLOBAL-MATRIX METHODS 

The matrix methods for the integration-of the Schrodinger equation are grounded 
in the simple boundary conditions that the solution is zero at r = 0 and at a given 
R,,, (in the case of one-dimensional problems these conditions are changed so that 
the wave function is null at some Rmin and R,,, approaching *co). Once R,,, has 
been decided one has to assume a value for the number of points N,,, the 
corresponding step being h = R,,.J(N, + I), and the solution of the differential 
equation is converted into the diagonalization of a real symmetric matrix. According 
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to I, the matrix to be diagonalized has a simple form in momentum space. The kinetic 
energy part is built up with the help of the matrix representation of 6’, namely, 

[6*],,, = -S,, 4 sin’ 2(Np: 1), 
P 

and the corresponding formulae for the second derivatives of each [N/M] approx- 
imation (see I, Eq. (9)). The resulting matrix for the kinetic energy then has a simple 
diagonal form. In the case of the PW method the form of the kinetic energy is still 
simpler, 

[-ig,,,= (h(ii& l))*s,,. 
To this matrix one has to add the matrix corresponding to the potential which in 

this representation is given by 

[v]p,g=?.- 9 sin*sin*I+h) 
Np+ 1 s=l P 

and proceed to the diagonalization. We stress that in the case of the PW method it is 
not necessary to compute the momentum representation of the potential: in 
configuration space the PW for of the kinetic energy is very simple (see I, Eq. (32)) 
and the potential is diagonal with values VP, = V(ph). 

After the solution of the matrix-eigenvalue problem there result Np non-degenerate 
real solutions which may be classified according to the number of nodes: no nodes 
for the lowest solution, one node for the next, and so on (the nodes at r = 0 and 
r =klax are not included in this counting). In the case of a confining potential, 
V(r) -+ co at r + co, all these solutions should correspond to bound states. On the 
contrary, for the potentials of most common interest, mainly attractive at short or 
medium distances and going to zero at infinity, only those solutions with negative 
energy do correspond to bound states. 

We have found only a few indirect references to the meaning of the solutions in the 
continuum arising from the global-matrix formulation of the Schrodinger equation, 
these solutions being termed as spurious. There are reasons for using that adjective, 
as far as there is not quantization in the continuum, the Schrodinger equation having 
solutions at every value of the energy. The boundary condition imposed at R,,, 
however, leads to an energy quantization: among the continuum of solutions for 
positive energy only those which are null at r = R,,, appear in the solution of the 
matrix-eigenvalue problem. On the other hand, this fact is sufficient to determine the 
phase shifts. Let us assume that there are Nb bound states; the nth solution of positive 
energy has Nb + n - 1 nodes, plus the nodes at r = 0 and R,,, . Then, the phase of 
this solution has had a change of (Nb + n)7c in the interval (0, R,,,). If the energy is 
E,, then the phase shift is obtained from the simple equation 

E’I*R n max + 6 = (Nb + n)n. (4) 
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In this form, the absolute phase shift (and not modulus Z) is obtained. The disad- 
vantage of the method is that we do not obtain the phase shift at a predetermined 
energy, but instead the phase shift at the discrete set of energy values resulting from 
the diagonalization. Certainly, a small change in R,,, would imply a small change in 
the eigenvalues of the continuum (and should not change the negative eigenvalues at 
all if R,,, is large enough) in such a form that we may obtain the phase shifts at 
other sets of energy values. Note that Eq. (4) must be appropriately changed for 
angular momentum states other than zero. 

A byproduct of the above discussion is that it offers a simple and intuitive picture 
of Levinson’s theorem. 

3. NUMERICAL EXAMPLES 

The first case we have considered is that of the harmonic oscillator potential. The 
radial equation in this case is given by 

2 l(1 t 1) -&r2+- r2 Y=EY ’ 

in units such that m = l/2, A = 1, and o = 2, and the energy levels are given by 

E= 2(2n +I+ $), n = 0, 1) 2 )... . 

(6) 

(7) 

TABLE I 

The First Six States of the Harmonic Oscillator Potential in s-Waves 

PW 3.0000000 6.9999996 il.000000 15.000000 19.000000 23.000000 

(l/0) ‘> 9538719 -. 6.7650318 10.414268 13.888676 17.17:248 20.238154 

(2/el) 2.9970800 6.9743809 10.908256 14.776006 18.554757 22.219834 

(3/0) 2.9997143 6.9961201 10.940344 lb. 940334 18.858118 22.713925 

(b/0) 2.9999623 6.9992803 10.995225 14.981533 18.947882 22.879739 

(l/l) 2.9988169 6.9891644 10. ss9372 lb. 896240 18.784728 22.607236 

(l/2) 2.9999081 6.9386883 10.993094 lb. 977290 18.942731 22.877854 

(l/3) 2.9999894 6.9997808 10.398452 14.99360b 18.980700 22.952426 

(2/2) 2.9999973 6.9999411 10.999553 lb. 997991 18.993406 22.982372 

(3/3) 3.0000000 6.9999991 10.999993 lb. 399949 18.993743 22. ss9000 
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The results for 1= 0 corresponding to the various methods considered are shown in 
Table I, for a mesh of 20 points and R,,, = 8. The results of this table are clearly 
impressive with regard to the PW and the [ 3/3] methods. We should also mention 
that the first of the levels computed with the PW method, which differs appreciably 
from the exact value, is the level n = 12, its energy being 5 1.0113 against the exact 
value 5 1. There is in Table I a remarkable characteristic, also present in the other 
calculations, which is the convergence of the subfamilies of methods toward the PW 
results with increasing N + M. Furthermore, among the methods with the same order 
of error, like [4/O], [l/3], and [ 2/2], the best is the diagonal Pade form. 

In Table II we show the error in the calculation of the g.s. for the various methods 
and for several number of points. It is an appealing fact that the PW method is 
monotonic, whereas the other methods may give results higher or lower than the 
exact value. This point must be considered when comparing the goodness of the 
various numerical methods: actually, the error may be very small for some value of 
N,, as in the case of the [4/O] method at Np = 6, but this does not mean that the 
result is good, because we may still be far from the stability against the number of 
points, as in the mentioned case. 

Finally, we show in Table III a large number of levels of the harmonic oscillator 
computed with the PW method with 20 points and for several values of the angular 
momentum. The most remarkable result of the table is that the odd angular 
momentum levels are not as well determined as the even angular momentum levels. 
Moreover, within the set of odd levels, the higher the angular momentum the better 
the result. We shall analyze these facts in the next section. 

TABLE II 

Absolute Error in the Calculation of the g.s. of the Harmonic Oscillator with R,,, = 8 

N. POINTS 4 6 0 10 12 

PW 

(l/0) 

(2/01 

(we) 

(4/0> 

(i/l) 

<l/2) 

(l/31 

(2/2) 

(3/3) 

0.586 0.038 0.0006 3. E-6 2. E-7 

0.321 -0.309 -0.267 -0.177 -0.125 

0.469 -0.094 -0.074 -0.036 -0.019 

0.521 -0.028 -0.029 -0.011 -0.004 

0.545 -0.00e4 -0.014 -0.004 -0.001 

0.512 -0.040 -0.039 -0.017 -0.089 

0. s40 0.002 -0.013 -0.004 -0.002 

0.563 0.017 -0.006 -0.002 -0.0015 

0.573 0.027 -0.003 -0.0006 -0.0082 

e. 583 0.035 0.0001 -0.0001 -6. E-6 
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TABLE III 

Energy Levels of the Harmonic Oscillator Potential Computedwith the PW Method for Various Angular 
Moments, R,,, = 8 

EXRCT L=0 1 2 3 4 5 

3 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

25 

27 

29 

31 

33 

35 

37 

39 

3.000000 

7.000000 

11.000000 

15.000000 

19.000000 

23.000000 

27.000001 

3 I. 000000 

34.999998 

39.000007 

4.988812 

8.969818 

12.942740 

16.906426 

20.859113 

24.798393 

28.721208 

32.623896 

36.502535 

7.000000 

11.000000 

15.000000 

19.000000 

22.999999 

27.000001 

31.000003 

35.00000 1 

39.000006 

6.9999% 1 

12.999905 

16.999703 

20.999257 

24.998375 

28.996740 

32.993816 

36.988687 

11.000000 

13.0000m 

15.000000 

16.999998 

19.000000 

20.999995 

23.000000 

24.999983 

27.000000 

28.999948 

31.000000 

32.999860 

35.000001 . 

36.999642 

39.0fb0005 

Note. The first column includes the exact results. 

The second case considered is the Hylleraas potential (3), which gives rise to the 
reduced equation 

2 

--$- VChp2r/R 

The bound states are classified by the number n in the range 

n= 1,2, s-9 < ((1 + 4R2?9”2 + 1)/4 

their energy being [4] 

(9) 

(10) 
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TABLE IV 

The Energy of the Three Bound States of the Hylleraas Potential 

0. S. 1BT "ND 

EXRCT 18.201156 5.136031 0.070906 

PU 18.201089 5.135686 0.062169 

(l/0) 16.729237 6.347958 0.489896 

(2/O) 18.283581 5.370231 0.121502 

(3/O) 18.221797 5.20s347 0.079488 

(4/O) 18.208030 5.162051 0.068897 

(l/l) 18.23910~5 5.246514 0.088817 

(l/2) 18.209323 5.164479 0.069288 

(l/3) 18.203750 5.146225 0.064881 

i2/2) 18.202072 5.139781 0.063243 

C&3) 18.201167 5.136074 0.062279 

The only relevant combination in this formula is the product R’V. Then we have 
taken R = 1 and V= 33 so that the potential has three bound states with energies 
-18.201156, -5.13603 1, and -0.070906. The reason for the selection of these 
parameters is the presence of a weakly bound state, because the levels near the edge 
of the well are rather hard to determine numerically. The results corresponding to this 
potential are shown in Table IV, for R,,, = 9 and N, = 30. An important remark on 
this potential is the necessity of using a large value of R,,, in order to bind the third 
state: actually for the calculation with N, = 20 and R,,, = 6 which has almost the 
same step, the reported calculation gives the same results for the g.s. and the first 
excited level, but the second excited level is off by one order of magnitude. The 
results corresponding to this level in Table IV are still far from the stability region 
and should not be used for comparison among the various methods. 

With regard to the other two levels the PW method gives much better results than 
the others, with the exception of the [3/3]. In that method the results are sometimes 
better than those of the PW by a slight amount. 

In the Hylleraas potential we also study the s-wave phase shifts. The values for 
R max = 6 and 20 mesh points are shown in Fig. 1 as a function of the energy and 
compared with the theoretical results obtained from the S-matrix [5]. Given that the 
theoretical results are modulus rr, the phase shifts have been adjusted so that they go 
to zero at high energy, and adding a sufficient number of x so as to have a smooth 
behaviour with the energy. From the figure we see that agreement with the exact 
results improves when N + M increases, as in the previous situations. Furthermore, 
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6 p/o1 

6 ;: , [4/O] 

“,PW 

FIG. 1. Comparison of the exact phase shifts (-) with the computed values for the Hylleraas 
potential. The phase shift is measured in radians and the energy in natural units. R,,, = 6 and N,, = 20. 

the quality of the PW results is much higher than in any of the other methods. A 
calculation with 40 points at the same value of R,,, with the PW method gives phase 
shifts in very good agreement up to energies of 350 in our units. 

A third case of interest, which has been the subject of much controversy [6, 7 ] in 
the last decade, is the Morse [8] potential. This potential is currently used to describe 
the vibrational levels of diatomic molecules, and the controversy originated from 
sizable differences between the calculations of several groups. The Morse potential in 
reduced form gives rise to the eigenvalue equation 

- -$+ V{ 1 - exp 2b(r - R)/R}’ Y= EY, (11) 

where R is the equilibrium separation of the atoms. This potential supports a set of 
bound states labelled by a quantum number n in the range 

n= 1,2,-e* < R V”‘/2b + 4 (14 

the energies being approximately [4] 

E, = -(4b2/R2)(n - 1 - (R V1’2/2b))2 (13) 

when the conditions R V”2 exp(2b)/b 9 R V”’ 4 1 are satisfied. We have used the 
values [6] V= 31,250 and b/R = 2 ‘I2 This does not completely specify the potential, . 
the equilibrium distance R still being a free parameter. However, R does not enter in 
the values of the energy, provided the above inequalities are satisfied (only the 
combination R/b is relevant). A usual value for R is 1.5 A. 
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An intrinsic problem related to this potential comes from the strong repulsion at 
short distances: as far as the relevant combination appearing in finite-differences 
integration methods is h2V, there results the necessity of choosing a small value of 
the step to maintain the stability criterion h* V < 1 in the region close to the origin, 
and this means that one must use a very large number of points. An important 
reduction is reached by observing that the wave function should be very small in that 
region and suggests the convenience of moving the boundary condition from r = 0 to 
some r = R,. This movement of the boundary condition is related to the irrelevance 
of R, within some limits, with respect to the energy: this new boundary condition is 
equivalent to a shift to the left of the whole potential, i.e., to change R by R -R,. A 
further observation helps in setting the numerical procedure, namely, the fact that the 
Morse potential behaves very much like a harmonic oscillator potential of frequency 
co2 = 16b2V/R2. From the point of view of global-matrix methods the above 
comments mean that to appropriately state the problem one has to impose the 
boundary conditions at some R,,, and R, symmetrically placed around the minimum 
of the well. With these facts in mind we have carried out the calculation of the lower 
levels of this potential by using R -R, = R,,, -R = 0.36 and with a mesh of odd 
number of points. The results corresponding to the PW method with 45 points are 
shown in Table V, compared with the values given by Eq. (13). 

Our results are impressively good, and they compare very well (and are sometimes 
better) with the results obtained by specialized methods like Rayleigh-Ritz-Galerkin 

TABLE V 

Energy Levels of the Morse Potential 

N EXFICT PW 

2 

3 

I 

5 

6 

7 

8 

9 

10 

11 

1338 

5258 

6162 

7050 

7922 

8778 

9618 

b98.000 

llr82.000 

2450.000 

5fi02.000 

4330.001 

5258.000 

6162.000 

7050.000 

7922.00.h 

8778.050 

9618. &87 

Note. The exact values are also included. 
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with the harmonic oscillator basis [7] or the sine basis [7,9]. The main advantage of 
our method is that we do not require analytic integrations. 

The final example considered is the exponential potential, the radial equation being 

--$- Vexp( -r) (14) 

The bound levels of this potential may be determined by solving the trascendent 
equation [lo] 

Jz fit2 @I = 0. (15) 

With V= 20.25 the potential has three bound levels with energies -6.74726, 
-1.47543, and -0.01241. We have devoted most of our computational work to this 
potential, because the behaviour of the numerical methods in this case is not easy to 
understand. In Table VI we report the error of the g.s. energy for a constant value of 
R max = 10 and for various values of the number of points of the mesh. In the table we 
observe that, with the exception of the simple Taylor-4 method, the results are 
surprisingly better for the a priori-worse methods, and the worst results correspond to 
our favourite PW method. The situation is analogous for the first excited level. With 
regard to the second excited level, no reliable results are obtained for this value of 
R max. Actually, we must go to R,,, = 30 and use a very large value of N, to bind 
this level with any of the methods. Furthermore, all methods converge very slowly 

TABLE VI 

The Error in the Calculation of the g.s. Energy of the Exponential Potential 

N. POINTS 10 20 30 LB 

PW 

(l/0) 

(210) 

(3/0) 

(410) 

(l/l) 

(l/2) 

(l/S) 

(212) 

(93) 

1.1868 0.1140 

0. 713.3 -0.2841 

1.0163 0.0284 

1.1039 0.0843 

1.1391 0.1006 

1.0876 0.0710 

1.1*23 0.1004 

1.1615 0.1079 

1. 1732 0.1111 

1.183.h 0.1135 

0.0215 0.0066 

-0.1748 -0. t040 

-0.0055 -0.0024 

0.0157 0. BBS2 

0.0196 0.0062 

0.0102 0.0027 

0.0192 0.0061 

0.0207 0.0065 

0.0212 0.0065 

0.0215 0.0066 

Note. The exact value is -6.7472 and the quantity tabulated is E,,,, -E,,,,, . 
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with Np, and even with N, = 70 the absolute error is still of order 10m4 for all 
methods. In our opinion the origin of this situation is the same as the origin of the 
particular behaviour of the odd angular momentum levels of the harmonic oscillator, 
and in the next section we shall point out a possible explanation. 

When going to the continuum the situation changes: again the phase shifts deter- 
mined with the PW method are the best ones, showing very good agreement with the 
theoretical results [lo]. 

4. CONCLUSIONS AND COMMENTS 

The examples studied in Section 3 permit us to establish the following results. 

(1) The PW method is the limiting case of subfamilies of matrix methods 
based in the finite-difference scheme. 

(2) The PW method is a simple and suitable method to compute both bound 
states and continuum phase shifts, giving very good results with a very small number 
of points. 

(3) Any knowledge of the properties of the potential or the solutions should be 
appropriately used to correctly state the numerical work, resulting in a considerable 
improvement of the results. 

There still remain three important questions regarding our examples. 

(1) Why are odd partial waves of the harmonic oscillator so badly determined 
with respect to the even states? 

(2) Why does the exponential potential exhibit anomalous behaviour? 
(3) Why are the [N/M] methods so inefficient for the determination of the 

phase shifts? 

The answer to question 3 is very simple: the continuum states are mainly sensitive 
to the high energy states involved in the momentum representations. A look at Fig. 2 
of I, which represents the kinetic energy contribution to the Hamiltonian matrix as 
given by the various integration methods, offers a straightforward answer to question 
3: the increase of N + M is more efficient in improving the low energy matrix 
elements than the high energy ones, so that all [N/M] methods should break at the 
upper levels of the spectrum. For this reason, the corresponding phase shifts are 
completely wrong. 

Neither of the other two questions has a simple answer. In our opinion the 
anomalous situation is a consequence of the properties of the related wave functions 
at short distances, their behaviour being incompatible with the particular periodic 
conditions hidden in our matrix formulation of the finite-difference integration 
methods. Let us consider the odd partial waves solutions of the harmonic oscillator: 
if the exact solutions are analytically continued to the negative r region, then the odd 
waves will be symmetric around the origin, whereas the matrix formulation assumes 
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50 100 150 E 

FIG. 2. Comparison of the exact phase shifts (-) with the computed values (---) for the 
exponential well. The phase shift is measured in radians. R,,, = 10 and N, = 20. The curve labelled PW 
extending up to 170 is computed with 40 points and with the same R,,,. 

an antisymmetric behaviour (remember that the reduced Schrodinger equation 
refers to the radial function divided by r, so that the symmetry properties are not 
the usual). In particular, the sine basis, F, = sin nr, at r = 0 spans the same Hilbert 
space as the polynomial basis r, r3, r’,..., r**-I, i.e., odd polynomials. It is certainly 
impossible to represent an even function in terms of odd polynomials, unless both are 
null, and this is what happens when the step goes to zero. The antisymmetry 
conditions only propagate to few columns of the Hamiltonian matrix, and if h -+ 0 
this propagation is harmless. In this form we understand why the convergence is so 
slow, and also why there is no breaking at all, i.e., we still have convergence. We also 
understand why this problem does not affect the Morse potential, the high barrier at 
short distances assuring that the wave function is negligibly small in that region. On 
the other hand, the solutions of the exponential potential do not have definite 
symmetry properties when extended to negative r regions, and this explains the 
anomalous results of Table VI. Finally, the s-wave states of the harmonic oscillator 
and the Hylleraas potential are antisymmetric, and no problem arises. 

The explanation suggests the convenience of generalizing the PW method by 
avoiding the antisymmetry requirements while maintaining the same description of 
the potential through the mere values on a given mesh. 
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